信息发布→ 登录 注册 退出

【项目实战】自监控-10-DataFrame索引操作(中篇)

发布时间:2025-09-23

点击量:

本文主要介绍了在实际项目中自监控系统中对采集的质量监控数据进行实时预警的相关操作,具体讨论了如何在dataframe中进行行索引与常规列的互换操作。以下是详细的步骤和示例:

Part 1:构建一个DataFrame

一个DataFrame可以视为一个二维表格,具有行标题和列标题,且这些标题可能有多级。我们通过字典构建一个DataFrame,并通过

index
参数指定行名称,同时为行索引指定名称
ts

import pandas as pd
dict1 = {"a": [1, 3, 5, 6], "b": [11, 12, 15, 16], "c": [22, 27, 29, 30], "d": [82, 87, 89, 80]}
df = pd.DataFrame(dict1, index=["x", "y", "z", "q"])
df.index.name = "ts"  # 指定行索引列名称
print("df= \n", df, "\n")

运行结果:

Part 2:将索引变成列

使用

reset_index
方法可以将索引转换为常规列。通过设置
inplace
参数,可以决定是否在原变量上执行操作。原索引变成常规列后,DataFrame会自动生成一个新的默认索引。

df.reset_index("ts", inplace=False)
print("未替换:\n", df, "\n")
df.reset_index("ts", inplace=True)
print("替换:\n", df, "\n")

运行结果:

Part 3:将列变成索引

使用

set_index
方法可以将常规列转换为索引。同样,通过设置
inplace
参数,可以决定是否在原变量上执行操作。执行该操作后,原索引会消失。

df.set_index("a", inplace=True)
print(df)

运行结果:

标签:# python  # 转换为  # 构建一个  # 中对  # 监控系统  # 自动生成  # 如何在  # 在实际  # ts  # import  # index  
在线客服
服务热线

服务热线

4008888355

微信咨询
二维码
返回顶部
×二维码

截屏,微信识别二维码

打开微信

微信号已复制,请打开微信添加咨询详情!